Extreme weather events are already being affected by human-caused climate change, and will increase in destructive power during the coming decades as huge cost,
reported the United Nations Intergovernmental Panel on Climate Change (IPCC) today. The IPCC issues reports on the state of the scientific knowledge of climate change every six years, with the next full report due out in 2013. However, concern over the possible impact climate change may already be having on extreme weather events like heat waves, floods, and droughts prompted the IPCC to release their first-ever Special Report on Managing the Risks of Extreme Events and Disasters to Advance Climate Change Adaptation (SREX). The SREX report was divided into two sections: how human-caused climate change has already affected extreme weather events, and predictions on how these events will change during the rest of the century. Here are some highlights on how the climate has already changed, according to the SREX report:
- Globally, cold days and nights have decreased, and warm days and nights have increased (90 - 100% chance).
- In many but not all regions of the globe, the length or number of heat waves has increased.
- Some areas have seen more intense and longer droughts, in particular, southern Europe and West Africa. However, droughts have become less frequent, less intense, or shorter in some areas, such as central North America and northwestern Australia.
- Heavy precipitation events have changed in some regions. There is at least a 2-in-3 probability that more regions have seen increases than decreases in heavy precipitation events.
- The historical data base on hurricanes and tropical cyclones is not good enough to tell if they have changed.
- The jet stream has shifted towards the poles, meaning that the tracks of rain-bearing low pressure systems have also shifted towards the poles.
- Rising sea levels have led to an increase in extreme coastal flooding events (66 - 100% chance).
- Damage from extreme weather events has increased. Increases in population and wealth, and the fact more people are living in vulnerable areas, is a major cause of this increase in damage. It is uncertain if climate change is partially responsible for the increase in damage.
Figure 1. Predicted return periods for 1-day extreme precipitation events that occurred, on average, only once every 20 years between 1981-2000. A decrease in return period implies more frequent extreme precipitation events (i.e., less time between events on average). For Eastern North America, a 1-in-20 year heavy rain event is predicted to become a 1-in-7 to 1-in-9 year event by the end of the century, according to these climate model predictions. The box plots show results for regionally averaged projections for two time horizons, 2046 to 2065 and 2081 to 2100, as compared to the late-20th-century, and for three different emissions scenarios--a scenario where humans emit relatively little CO2 and other heat-trapping gasses (B1, blue bars), and two higher-emission scenarios (A1B and A2, green and red bars). Humanity is currently on a pace to emit more CO2 than the highest emission scenario shown here. Results are based on 14 climate models that contributed to the 2007 IPCC report. The level of agreement among the models is indicated by the size of the colored boxes (in which 50% of the model projections are contained), and the length of the whiskers (indicating the maximum and minimum projections from all models). Values are computed for land points only. The “Globe” inset box displays the values computed using all land grid points. Averaged over all areas of the globe, a 1-in-20 year heavy rain event is predicted to become a 1-in-8 to 1-in-12 year event by the end of the century. Image credit:
The IPCC Special Report on Managing the Risks of Extreme Events and Disasters (SREX), 2011.Here are some highlights of the forecasts for the future from the 2011 SREX report:- A 1-in-20 year hottest day is at least 66% likely to become a 1-in-2 year event by the end of the 21st century in most regions, except in the high latitudes of the Northern Hemisphere, where it is likely to become a 1-in-5 year event.
- For Eastern North America, a 1-in-20 year heavy rain event is predicted to become a 1-in-7 to 1-in-9 year event by the end of the century.
- For Eastern North America, a maximum high temperature that occurred only once every 20 years during 1980 - 2000 is predicted to occur between once every three years and once per year by 2100.
- Extreme high temperature readings that occur once every 20 years will increase by 1°C to 3°C (1.8°F - 5.4°F) by mid-21st century and by about 2°C to 5°C (3.6°F - 9°F) by late-21st century.
- It is at least 66% likely that the frequency of heavy precipitation or the proportion of total rainfall from heavy falls will increase in the 21st century over many areas of the globe. This is particularly the case in the high latitudes and tropical regions, and in winter in the northern mid-latitudes. There is medium confidence that, in some regions, increases in heavy precipitation will occur despite projected decreases of total precipitation in those regions.
- Heavy rainfalls associated with tropical cyclones are at least 66% likely to increase with continued warming, and the maximum winds will increase. The total number of these storms is likely to remain about the same or decrease.
- There is medium confidence that droughts will intensify in the 21st century in some seasons and areas. Southern Europe and the Mediterranean region, central Europe, Central North America, Central America and Mexico, northeast Brazil, and southern Africa are at particular risk.
- In some regions, the main driver for increased damages from extreme weather events will not be climate change, but increases in population and wealth and vulnerability.
Intoducing climatecommunication.orgFor those of you seeking detailed information on the research linking extreme weather events to climate change, I recommend a new website dedicated to improving communication of climate change information to the public, media, and policy makers,
climatecommunication.org. The group is led by Susan Joy Hassol, a veteran climate change communicator, analyst, and author known for her ability to translate science into English, making complex issues accessible to policymakers and the public. Climatecommunication.org has put together an
overview of extreme weather and climate change that I find a helpful resource when I am looking for the latest research results on the subject. I serve on their advisory board, along with a number of leading climate scientists.
Figure 2. Still image of the Bangkok, Thailand floods of October - November, 2011, as seen on the
inaugural episode our new bi-monthly Extreme Weather video series.
Wunderground launches new Extreme Weather video seriesWunderground now features a new, twice-monthly Extreme Weather video series from
GREEN.TV, with the latest reports and analysis on extreme weather around the world. From droughts to hurricanes to blizzards to flooding, Extreme Weather will cover the story and the science behind the events to try to understand their causes and consequences. The Extreme Weather series is sponsored by Vestas, the world's leading wind turbine manufacturer. The
inaugural episode, launched yesterday, features video of the great Thailand flood, destructive floods in Italy, the $3 billion Northeast U.S. snowstorm of October 29 - 30, the massive
Bering Sea, Alaska blizzard of November 9, the Texas drought, and the launch of a new polar-orbiting weather satellite. Look for a new video every two weeks on our
Climate Change Videos page.ResourcesFor those of you who haven't seen it, my top "must-read" post of 2011 is called,
2010 - 2011: Earth's most extreme weather since 1816?. Back in June, I went through the ridiculous barrage of extreme weather events the planet saw in 2010 and early 2011, and concluded:
But it is highly improbable that the remarkable extreme weather events of 2010 and 2011 could have all happened in such a short period of time without some powerful climate-altering force at work. The best science we have right now maintains that human-caused emissions of heat-trapping gases like CO2 are the most likely cause of such a climate-altering force. Wunderground's climate change blogger, Dr. Ricky Rood, has some thoughtful observations on the communication of the extreme weather/climate change link published in earthzine magazine titled,
Changing the Media Discussion on Climate Change and Extreme Weather.Jeff Masters